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Abstract

Molecular overlap-like quantum similarity measurements imply the evaluation of overlap integrals of two molecular
electronic densities related by Dirac delta function. When the electronic densities are expanded over atomic orbitals using
the usual LCAO-MO approach (linear combination of atomic orbitals), overlap-like quantum similarity integrals could be
expressed in terms of four-center overlap integrals.

It is shown that by introducing the Fourier transform of delta Dirac function in the integrals and using the Fourier
transform approach combined with the so-called B functions, one can obtain analytic expressions of the integrals under
consideration. These analytic expressions involve highly oscillatory semi-infinite spherical Bessel functions, which are
the principal source of severe numerical and computational difficulties.

In this work, we present a highly efficient algorithm for a fast and accurate numerical evaluation of these multicenter
overlap-like quantum similarity integrals over Slater type functions. This algorithm is based on the SD approach due to
Safouhi. Recurrence formulae are used for a better control of the degree of accuracy and for a better stability of the algo-
rithm. The numerical result section shows the efficiency of our algorithm, compared with the alternatives using the
one-center two-range expansion method, which led to very complicated analytic expressions, the epsilon algorithm and
the nonlinear D transformation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Previous work [1,2] on the accurate and fast numerical evaluation of multicenter overlap-like quantum sim-
ilarity integrals over Slater type functions continues with the present contribution. These integrals are required
accurately in molecular similarity measurements, where molecules are compared with each other to explain
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changes in their chemical reactivity in a series. The chemical activity of a molecule is completely described by
its electronic density, from this it follows that molecules with similar electronic structures have similar chem-
ical properties [3,4].

The quantum similarity measurements (QSM) are based on a quantitative comparison of electronic densi-
ties of two molecules superposed and aligned to optimize a well-defined similarity function [5–9]. This proce-
dure leads to nuclear distances smaller than usually encounter in molecular bonds. This is why one should
choose basis functions which describe as well as possible the electronic density near the nucleus. Therefore,
the choice of the basis set of atomic orbitals is of a great importance.

A good atomic orbital basis should also satisfy Kato�s conditions for analytical solutions of the appropriate
Schrödinger equation [10] and should decay exponentially for large distances [11,12]. The most popular functions
are the Gaussian type functions (GTFs) [13]. Unfortunately, these GTF basis functions fail to satisfy the above
mathematical conditions for atomic electronic distributions. Slater type functions (STFs) [14,15] are better suited
than GTFs to represent electron wave functions near the nucleus and at long range [16]. Unfortunately, the use of
STFs has been prevented by the fact that their multicenter integrals are extremely difficult to evaluate.

In [2], we presented an analytic development of multicenter overlap-like quantum similarity integrals over
STFs. These STFs were expressed in terms of the so-called B functions [17,18]. The use of the so-called B func-
tions was proposed by Shavitt [19], since reduced Bessel functions possess a representation in terms of a
remarkably simple Gauss transform [19]. This Gauss transform was also the reason why reduced Bessel func-
tions were used as basis functions in electronic structure calculations of simple systems [20–23]. Detailed dis-
cussions of the mathematical properties of reduced Bessel functions and of their anisotropic generalizations
can be found in the Ph.D. theses of Weniger [24] and Homeier [25].

These B functions have much more appealing properties applicable to multicenter integral problems, com-
pared to other exponentially decaying functions. They possess a relatively simple addition theorem [18] and
remarkably simple convolution theorems as well as Coulomb integrals [17,26–28]. The addition theorem of
reduced Bessel functions was applied for the computation over overlap and related multicenter integrals
[29,30]. The convolution formulas for overlap integrals of B functions derived by Filter [26] were applied in [31].

The multicenter molecular integrals of B functions can be computed (much) more easily than the corre-
sponding integrals of other exponentially decaying functions. This can be explained in terms of the Fourier
transform of B functions, which is of exceptional simplicity among exponentially decaying functions. This
Fourier transform was derived in the Ph.D. thesis of Weniger [24] and later published in [32]. Independently
and almost simultaneously, the expression for the Fourier transform of a B function was also derived by
Niukkanen [33]. Moreover, the Fourier transforms of STFs, of hydrogen eigenfunctions, or of other functions
based on the generalized Laguerre polynomials can all be expressed as finite linear combinations of Fourier
transforms of B functions [32,34]. The basis set of B functions is well adapted to the Fourier transform method
[35–42], which allowed analytic expressions to be developed for molecular multicenter integrals [41,42].

Detailed discussions on B functions and their Fourier transform and the application to multicenter molec-
ular integral problems can be found in a recent paper by Weniger [43].

The Dirac delta Fourier representation was also introduced and a convolution theorem was used to obtain
analytic expressions for the overlap-like quantum similarity integrals.

The obtained analytic expressions for the integrals under consideration turned out to be almost identical to
the analytic expressions obtained for the four-center two-electron Coulomb integrals. Many approaches were
developed for a fast and accurate numerical evaluation of these Coulomb integrals [41,42,44–59]. In [60], we
used the nonlinear D transformation of Sidi [61–63] for a numerical evaluation of the analytic expressions
obtained for the overlap-like quantum similarity integrals. The numerical results that we obtained demon-
strated the high accuracy of the D transformation.

In the present work, we focus on the application of the SD approach due to Safouhi [64,65], which was
shown to be highly efficient and rapid [58,66,67], compared with alternatives using Gauss–Laguerre quadra-
ture, the epsilon algorithm of Wynn [68] and Levin�s u transform [69], in the numerical evaluation of two-,
three- and four-center one and two-electron Coulomb integrals over STFs or related functions. This SD
approach consists on transforming the semi-infinite spherical Bessel integral, into a semi-infinite integral
involving the simple sine function. This transformation will be referred to as the S transformation. The oscil-
latory part of the integrand, the spherical Bessel function, is replaced by the simple trigonometric sine
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function, using a relation between these two functions and a series of integration by part with respect to x dx.
The strong oscillations of the integrand were considerably reduced and this helps the extrapolation methods.
The obtained integrand was shown to be suitable to apply the nonlinear D transformation of Sidi. This non-
linear transformation improves the convergence of highly oscillatory semi-infinite integrals, whose integrands
satisfy linear differential equations with coefficients having asymptotic expansions in the sense of Poincaré [70].
Cramer�s rule is used to compute approximations of the semi-infinite integrals, which is shown to be faster
than solving the linear systems generated by the D transformation. Recurrence relations were also developed
for a better control of the degree of accuracy and for better stability of the algorithm [67,58]. Extensive numer-
ical results with linear and nonlinear molecules, and comparisons with results from the literature and results
obtained using existing codes such as Alchemy package [71], STOP (Slater type orbital package) developed by
Bouferguene et al. [72] and ADGGSTNGINT, using STOnG (STFs expressed as a combination of n GTFs),
developed by Rico et al. [46], can be found in [58,66,67]. The numerical results section also prove the ability to
reproduce values of the two-center integrals, obtained in previous works [1,73,74].

2. General definitions and properties

Unnormalized STFs are defined by [14,15]:
evm
n;lðf;~rÞ ¼ rn�1 e�fr Y m

l ðh~r;u~rÞ; ð1Þ
where n, l, m are the quantum numbers and they are such that n = 1,2, . . . , l = 0,1, . . . ,n � 1 and
m = �l,�l + 1, . . . , l � 1, l, and where Y m

l ðh;uÞ stands for the surface spherical harmonic and is defined explic-
itly using the Condon–Shortley phase convention as follows [75]:
Y m
l ðh;uÞ ¼ imþjmj ð2lþ 1Þðl� jmjÞ!

4pðlþ jmjÞ!

� �1
2

P jmjl ðcos hÞeimu; ð2Þ
P m
l ðxÞ is the associated Legendre polynomial of lth degree and mth order.

The Slater type functions (STFs) are defined in normalized form according to the following relationship:
vm
n;lðf;~rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2fÞ2nþ1

ð2nÞ!

s
rn�1e�frY m

l ðh~r;u~rÞ; ð3Þ
STFs can be expressed as finite linear combinations of B functions [17]:
evm
n;lðf;~rÞ ¼

1

fn�1

Xn�l

p¼~p

ð�1Þn�l�p22pþ2l�nðlþ pÞ!
ð2p � nþ lÞ!ðn� l� pÞ! Bm

p;lðf;~rÞ; ð4Þ
where
~p ¼
n�l

2
if n� l is even;

n�lþ1
2

if n� l is odd.

(
ð5Þ
The B functions are defined as follows [17]:
Bm
n;lðf;~rÞ ¼

ðfrÞl

2nþlðnþ lÞ!
k̂n�1

2
ðfrÞY m

l ðh~r;u~rÞ; ð6Þ
where the reduced Bessel function k̂n�1
2
ðzÞ is given by [18,76]:
k̂n�1
2
ðzÞ ¼

Xn

j¼1

ð2n� j� 1Þ!
ðj� 1Þ!ðn� jÞ!

zj�1e�z

2n�1
. ð7Þ
A useful property satisfied by k̂nþ1
2
ðzÞ is given by:
d

z dz

� �m k̂nþ1
2
ðzÞ

z2nþ1
¼ ð�1Þm

k̂nþmþ1
2
ðzÞ

z2ðnþmÞþ1
. ð8Þ
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The Fourier transform B
m
n;lðf;~pÞ of Bm

n;lðf;~rÞ is given by [32]:
B
m
n;lðf;~pÞ ¼

ffiffiffi
2

p

r
f2nþl�1 ð�ijpjÞl

ðf2 þ jpj2Þnþlþ1
Y m

l ðh~p;u~pÞ. ð9Þ
Let the function c be defined by:
cðj; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ jx2

p
.

Now, with the help of the Leibnitz formula and the fact that d
dx ¼ dz

dx
d
dz, one can easily show that if

nc = 2m = 2n + 1 then for j 2 N:
d

x dx

� �j k̂m½cðj; xÞ�
cðj; xÞ½ �nc

" #
¼ ð�1Þjjj k̂mþj cðj; xÞ½ �

cðj; xÞ½ �2ðmþjÞ ; ð10Þ
and for nc < 2m, we obtain:
d

x dx

� �j k̂m½cðj; xÞ�
½cðj; xÞ�nc

" #
¼ jj

cðj; xÞ½ �ncþ2j

Xj

i¼0

j

i

� �
ð�1Þj�ið2m� ncÞ!!
ð2m� nc � 2iÞ!! k̂mþj�i cðj; xÞ½ �; ð11Þ
Gaunt coefficients are defined by [77–80]:
hl1m1jl2m2jl3m3i ¼
Z p

h¼0

Z 2p

u¼0

½Y m1
l1
ðh;uÞ��Y m2

l2
ðh;uÞY m3

l3
ðh;uÞ sinðhÞ dh du. ð12Þ
The Gaunt coefficients linearize the product of two spherical harmonics:
Y m1
l1
ðh;uÞ

h i�
Y m2

l2
ðh;uÞ ¼

Xlmax

l¼lmin;2

hl2;m2jl1;m1jl;m2 � m1iY m2�m1
l ðh;uÞ

¼
Xlmax

l¼lmin;2

hl1;m1jl2;m2jl;m1 � m2i Y m1�m2
l ðh;uÞ½ ��; ð13Þ
where the subscript l = lmin,2 in the summation symbol implies that the summation index l runs in steps of 2

from lmin to lmax. The summation limits are given in [79].
The spherical Bessel function jn(z) is defined by [81]:
jnðzÞ ¼ ð�1Þnzn d

z dz

� �n
sinðzÞ

z

� �
. ð14Þ
In the following all the integration over physical variables extend over the whole R3.
The Fourier representation of the Dirac delta function [81]:
dð~r1 �~r2Þ ¼
1

ð2pÞ3
Z

e�~x�ð~r1�~r2Þ d~x. ð15Þ
3. Multicenter overlap-like quantum similarity integral

The molecular quantum similarity measurement is defined as an integral involving two molecular electronic
density functions, qAð~rÞ and qBð~rÞ, related by an hermitian bielectronic operator, Xð~r1;~r2Þ [3,82]:
ZAB ¼
Z Z

qAð~r1ÞXð~r1;~r2ÞqBð~r2Þ d~r1 d~r2. ð16Þ
In the case where Xð~r1;~r2Þ is the Dirac delta function, dð~r1 �~r2Þ, we obtain the expression of the overlap-like
quantum similarity measurement, which gives an index of the similarity of the electronic densities of molecules
A and B:
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ZAB ¼
Z Z

qAð~r1Þdð~r1 �~r2ÞqBð~r2Þ d~r1 d~r2. ð17Þ
To provide a general normalized index which allows comparison of molecules in a series, Carbò et al. intro-
duced the normalized quantum similarity index [83]:
CAB ¼
ZABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZAAZBB
p ; ð18Þ
where ZAA and ZBB stand for the self-similarity measures. The index CAB is close to the unity when molecular
electronic structures are similar.

Using the linear combination of atomic orbitals (LCAO) approach, with STFs as a basis set of atomic orbi-
tals, one can express the overlap-like quantum similarity measurement (17) as follows:
ZAB ¼
X

i;j

X
k;l

CiACjACkBClBZ1234; ð19Þ
where Z1234 stand for the overlap-like quantum similarity integrals over STFs:
Z1234 ¼
Z Z

vm1
n1;l1
ðf1;~r1 � OA

�!Þ�vm2
n2;l2
ðf2;~r1� OB

�!Þdð~r1�~r2Þ � vm3
n3;l3
ðf3;~r2� OC

�!Þ�vm4
n4;l4
ðf4;~r2� OD

�!Þ d~r1 d~r2.

ð20Þ

After a translation of vectors OA

!
and OD

!
, the above integral will be re-written as follows:
Z1234 ¼
Z Z

vm1
n1;l1
ðf1;~r1Þ�vm2

n2;l2
ðf2;~r1 �~R21Þdð~r1 �~r2 �~R41Þ � vm3

n3;l3
ðf3;~r2 �~R34Þ�vm4

n4;l4
ðf4;~r2Þ d~r1 d~r2; ð21Þ
where ~R21 ¼ AB
�!

and ~R34 ¼ DC
�!

.
By using expression (4), we can express Eq. (21) as a finite linear combination of overlap-like quantum sim-

ilarity integrals over B functions as follows:
Z1234 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22n1þ2n2þ2n3þ2n4þ4f2n1þ1

1 f2n2þ1
2 f2n3þ1

3 f2n4þ1
4

ð2n1Þ!ð2n2Þ!ð2n3Þ!ð2n4Þ!

s Xn1�l1

p1¼~p1

ð�1Þn1�l1�p1 22p1þ2l1�n1ðl1 þ p1Þ!
fn1�1

1 ð2p1 � n1 þ l1Þ!ðn1 � l1 � p1Þ!

�
Xn2�l2

p2¼~p2

ð�1Þn2�l2�p2 22p2þ2l2�n2ðl2 þ p2Þ!
fn2�1

2 ð2p2 � n2 þ l2Þ!ðn2 � l2 � p2Þ!
Xn3�l3

p3¼~p3

ð�1Þn3�l3�p3 22p3þ2l3�n3ðl3 þ p3Þ!
fn3�1

1 ð2p3 � n3 þ l3Þ!ðn3 � l3 � p3Þ!

�
Xn4�l4

p4¼~p4

ð�1Þn4�l4�p4 22p4þ2l4�n4ðl4 þ p4Þ!
fn4�1

2 ð2p4 � n4 þ l4Þ!ðn4 � l4 � p4Þ!
eZ 1234; ð22Þ
where eZ 1234 stands for overlap-like quantum similarity integrals over B functions:
eZ 1234 ¼
Z Z

Bm1
p1;l1
ðf1;~r1Þ

h i�
Bm2

p2;l2
ðf2;~r1 �~R21Þdð~r1 �~r2 �~R41Þ

� Bm3
p3;l3
ðf3;~r2 �~R34Þ

h i�
Bm4

p4;l4
ðf4;~r2Þ d~r1 d~r2; ð23Þ
where ~pi with i = 1,2,3,4 are given by (5).
Now, introducing the Fourier representation of the Dirac delta function (15) in the above integral over B

functions, we obtain:
eZ 1234 ¼
1

ð2pÞ3
Z

ei~x�~R41

Z
Bm1

n1;l1
ðf1;~r1Þ

h i�
e�i~x�~r1 Bm2

n2;l2
f2;~r1 �~R21

� 	
d~r1

� �
�
Z

Bm3
n3;l3

f3;~r2 �~R34

� 	h i�
ei~x�~r2 Bm4

n4;l4
ðf4;~r2Þ d~r2

� �
d~x. ð24Þ
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With the help of the Fourier transform method [41,42], analytic expressions are developed for the terms
[41,42]:
Z

Bm1
n1;l1

f1;~r1ð Þ
h i�

e�i~x�~r1 Bm2
n2;l2

f2;~r1 �~R21

� 	
d~r1
and
 Z
Bm3

n3;l3
f3;~r2 �~R34

� 	h i�
ei~x�~r2 Bm4

n4;l4
f4;~r2ð Þ d~r2.
By using the analytic expressions obtained for the above terms occurring in Eq. (24), we obtained analytic
expressions for multicenter overlap-like quantum similarity integrals over B functions. These analytic expres-
sions are given by:
eZ 1234 ¼ 8ð4pÞ4ð2l1 þ 1Þ!!ð2l2 þ 1Þ!!ð2l3 þ 1Þ!!ð2l4 þ 1Þ!!

� ðn1 þ n2 þ l1 þ l2 þ 1Þ!
ðn1 þ l1Þ!ðn2 þ l2Þ!

ðn3 þ n4 þ l3 þ l4 þ 1Þ!
ðn3 þ l3Þ!ðn4 þ l4Þ!

�
Xl1

l0
1
¼0

Xl1max

m0
1
¼l1min

ð�iÞl1þl0
1
hl1;m1jl01;m01jl1 � l01;m1 � m01i
ð2l01 þ 1Þ!!½2ðl1 � l01Þ þ 1�!!

�
Xl2

l0
2
¼0

Xl2max

m0
2
¼l2min

ð�iÞl2þl0
2
hl2;m2jl02;m02jl2 � l02;m2 � m02i
ð2l02 þ 1Þ!!½2ðl2 � l02Þ þ 1�!!

�
Xl3

l0
3
¼0

Xl3max

m0
3
¼l3min

ðiÞl3þl03
hl3;m3jl03;m03jl3 � l03;m3 � m03i
ð2l03 þ 1Þ!!½2ðl3 � l03Þ þ 1�!!

�
Xl4

l0
4
¼0

Xl4max

m0
4
¼l4min

ðiÞl4þl0
4
hl4;m4jl04;m04jl4 � l04;m4 � m04i
ð2l04 þ 1Þ!!½2ðl4 � l04Þ þ 1�!!

�
Xl01þl0

2

l0
21
¼l0

21 min
;2

ð�1Þl
0
1hl02;m02jl

0
1;m

0
1jl
0
21;m

0
21iR

l021
21 Y

m0
21

l021
ðh~R21

;u~R21
Þ

�
Xl03þl0

4

l0
34
¼l0

34 min
;2

ð�1Þl
0
4hl04;m04jl

0
3;m

0
3jl
0
34;m

0
34iR

l0
34

34 Y
m0

34

l0
34
ðh~R34

;u~R34
Þ

�
Xl1�l0
1
þl2�l0

2

l21¼l21 min;2

hl2 � l02;m2 � m02jl1 � l01;m1 � m01jl21;m21i

�
Xl4�l0
4
þl3�l0

3

l34¼l34 min;2

hl3 � l03;m3 � m03jl4 � l04;m4 � m04jl34;m34i

�
Xl21þl34

k¼kmin;2

ð�iÞkhl21;m21jl34;m34jk; li
XDl21

j21¼0

Dl21

j21

� �
ð�1Þj21f2n1þl1�1

1 f2n2þl2�1
2

2n1þn2þl1þl2�j21þ1ðn1 þ n2 þ l1 þ l2 � j21 þ 1Þ!

�
XDl34

j34¼0

Dl34

j34

� �
ð�1Þj34f2n3þl3�1

3 f2n4þl4�1
4

2n3þn4þl3þl4�j34þ1ðn3 þ n4 þ l3 þ l4 � j34 þ 1Þ!

�
Z 1

0

an2þl2þl1�l0
1ð1� aÞn1þl1þl2�l0

2

Z 1

0

bn3þl3þl4�l0
4ð1� bÞn4þl4þl3�l0

3 Y l
kðh~v;u~vÞ

�
Z þ1

0

xnx
k̂m21
½c21ða; xÞR21�
½c21ða; xÞ�

nc21

k̂m34
½c34ðb; xÞR34�

c34ðb; xÞ½ �nc34
jkðvxÞ dx db da; ð25Þ
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where
Fig. 1.
nx = k
limin
¼ max �l0i;mi � li þ l0i

� 	
;

limax
¼ min l0i;mi þ li � l0i

� 	
for i ¼ 1; 2; 3; 4;

l021 min; l034 min; l21 min; l34 min and kmin given by (13)

m21 ¼ ðm2 � m02Þ � ðm1 � m01Þ;
m34 ¼ ðm3 � m03Þ � ðm4 � m04Þ and l ¼ m21 � m34;

Dl21 ¼ ðl01 þ l02 � l021Þ=2 and Dl34 ¼ ðl03 þ l04 � l034Þ=2;

nx ¼ l1 � l01 þ l2 � l02 þ l3 � l03 þ l4 � l04 þ 2;

m21 ¼ n1 þ n2 þ l1 þ l2 � l021 � j21 þ
1

2
;

nc21
¼ 2ðn1 þ n2 þ l1 þ l2Þ � ðl01 þ l02 þ l021Þ þ 1;

m34 ¼ n3 þ n4 þ l3 þ l4 � l034 � j34 þ
1

2
;

nc34
¼ 2ðn3 þ n4 þ l3 þ l4Þ � ðl03 þ l04 þ l034Þ þ 1;

c21ða; xÞ ¼ ð1� aÞf2
1 þ af2

2 þ að1� aÞx2

 �1

2;

c34ðb; xÞ ¼ ð1� bÞf2
4 þ bf2

3 þ bð1� bÞx2

 �1

2;

~v ¼ ð1� aÞ~R21 � ð1� bÞ~R34 �~R41;

R21 ¼ j~R21j; R34 ¼ j~R34j and v ¼ j~vj.
4. The SD approach and the development of the algorithm

It is well known that in applied mathematics, in the numerical treatment of scientific problems and in engi-
neering, oscillatory integrals, slowly convergent or divergent sequences and series occur abundantly. They are
produced by approximation procedures depending on a parameter, iterative methods and perturbation tech-
niques. Very often, the use of these oscillatory integrals and slowly convergent or divergent series presents
The integrand of the semi-infinite integral with the spherical Bessel function (26) (a = .999, b = .005, m12 = m34 = 5/2, nc12
¼ nc34

¼ 1,
= 1, f1 = f4 = 1.0, f2 = 1.5, f3 = 2.0, R12 = 2.0, R34 = 1.0 and v = 45.993).
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severe numerical and computation difficulties. This is the reason why nonlinear transformation methods for
accelerating the convergence of oscillatory integrals or infinite series have been studied for many years and
applied to various situations. These methods are based on the idea of extrapolation [84–86]. Their utility
for enhancing and even inducing convergence has been amply demonstrated by Shanks [87]. With the help
of nonlinear transformations or convergence accelerators, oscillatory integrals, slowly convergent and diver-
gent sequences and series can be transformed into sequences and series with hopefully numerical properties. In
the case of nonlinear transformations the improvement of convergence can be remarkable. These methods
form the basis of new methods for solving various problems which were unsolvable otherwise and have many
applications as well [84].

In the present work, we focus on the application of nonlinear D transformation of Sidi for improving
convergence of highly oscillatory integrals and on some extrapolation techniques developed by Safouhi for
accurate and fast numerical evaluation of complicated multicenter integrals as they occur in electronic struc-
ture calculations.

Let fZða; bÞ be the semi-infinite integrals which occurs in the above analytic expression. It is given by:
fZða; bÞ ¼ Z þ1

0

xnx
k̂m21
½c21ða; xÞR21�

c21ða; xÞ½ �nc21

k̂m34
½c34ðb; xÞR34�
½c34ðb; xÞ�

nc34
jkðvxÞ dx. ð26Þ
The above semi-infinite integral is identical to the semi-infinite integral occurring in the analytic expression of
four-center two-electron Coulomb integral [53,58,59]. The semi-infinite integral can be transformed into an
infinite series as follows:
fZða; bÞ ¼Xþ1
n¼0

Z jnþ1
;v

jn
;v

xnx
k̂m21
½c21ða; xÞR21�
½c21ða; xÞ�

nc21

k̂m34
½c34ðb; xÞR34�
½c34ðb; xÞ�

nc34
jkðvxÞ dx; ð27Þ

n

where j0
k;v is assumed to be 0 and jn

k;v ¼
j
kþ1

2

v for n = 1,2, . . . are the successive positive zeros of jk(vx).
The numerical evaluation of the three-dimensional integral representation, which occurs in Eq. (25) turned

out to be extremely difficult when the values of a and b are close to 0 or 1. In these regions the asymptotic
behavior of the integrand of fZða; bÞ, which will be referred to as Fa;bðxÞ, cannot be represented by a function
of the form e�.xg(x) where g(x) is not a rapidly oscillating function. This is due to the fact that when a and b
are close to 0 or 1, the arguments c21(a,x) and c34(b,x) of k̂m21

and k̂m34
become constants and therefore the rapid

oscillations of jk(vx) cannot be damped by the exponential decreasing functions k̂m21
and k̂m34

(see Fig. 1). Note
that when the value of v is very large, the zeros of Fa;bðxÞ become closer and therefore the oscillations become
strong and then the numerical evaluation of fZða; bÞ become very difficult in particular for large values of k
(see Fig. 1).

In [60], we demonstrated the applicability of the nonlinear D transformation for improving convergence of
the semi-infinite integrals fZða; bÞ (26). The approximation D

ð2Þ
n of the semi-infinite integral is obtained by solv-

ing the following linear set of equations:
D
ð2Þ
n ¼

Z xl

0

FðtÞ dt þ x2
l ga;bðxlÞj0kðvxlÞ

Xn�1

i¼0

�b1;i

xi
l

; l ¼ 0; 1; . . . ; n; ð28Þ
where
ga;bðxÞ ¼ xnx
k̂m21
½c21ða; xÞR21�
½c21ða; xÞ�

nc21

k̂m34
½c34ðb; xÞR34�

c34ðb; xÞ½ �nc34
;

F ðxÞ ¼
Z x

0

ga;bðtÞj0kðv tÞ dt;

ð29Þ
and where xl ¼
jlþ1

kþ1
2

v for l = 0,1,2, . . . are the leading positive zeros of jk(vx).
It is clear that the calculation of the approximations D

ð2Þ
n requires a large amount of CPU time, since it

requires the computation of the successive leading zeros of the spherical Bessel functions (except in the case
where k = 0) and it also requires the computation of a method to solve linear systems. This is due to the pres-
ence of the spherical Bessel functions. In the present contribution, we used another approach, which will
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Fig. 2. The integrand of the semi-infinite integral with the sine function (30) (a = .999, b = .005, m12 = m34 = 5/2, nc12
¼ nc34

¼ 1,
nx = k = 1, f1 = f4 = 1.0, f2 = 1.5, f3 = 2.0, R12 = 2.0, R34 = 1.0 and v = 45.993).
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further reduce the calculation times and further improve the accuracy in the numerical evaluation of the semi-
infinite integrals under consideration. This algorithm is based on the so-called SD approach [53,64]. This
method consists on applying the S and D transformations. The S transforms the semi-infinite spherical Bessel
integral fZða; bÞ into a semi-infinite integral involving the simple sine function. The obtained semi-infinite inte-
gral is given by [53,64]:
fZða; bÞ ¼ 1

vkþ1

Z þ1

0

Ga;b sinðvxÞ dx; ð30Þ

¼ 1

vkþ1

Xþ1
n¼0

Z ðnþ1Þp=v

np=v
Ga;bðxÞ sinðvxÞ dx; ð31Þ
where the function Ga,b(x) is given by:
Ga;bðxÞ ¼
d

x dx

� �k

xnxþk�1 k̂m21
½c21ða; xÞR21�
½c21ða; xÞ�

nc21

k̂m34
½c34ðb; xÞR34�
½c34ðb; xÞ�

nc34

 !
. ð32Þ
From Fig. 2 it follows that the new integrand with the simple sine function is not a highly oscillatory function
compared with the integrand Fa;bðxÞ with the spherical Bessel function. The fact that the strong oscillations
were considerably reduced helps the extrapolation method. Note also that the new integrand converges faster
to 0 than the integrand Fa;bðxÞ with the spherical Bessel function.

It is shown [53,64] that the integrand of the above semi-infinite integral, which will be referred to as fFa;bðxÞ
satisfy all the conditions to apply the nonlinear D transformation. The fact that the zeros of the sine function
are equidistant allowed the use of Cramer�s rules as demonstrated by Sidi [62] for calculating the approxima-
tion of the semi-infinite integral fZða; bÞ, which is given by [64]:� �
SD
ð2;jÞ
n ¼

Pnþ1
i¼0

nþ 1

i
ð1þ iþ jÞneF ðxiþjÞ x2

iþjGa;bðxiþjÞ
h i.

Pnþ1
i¼0

nþ 1

i

� �
ð1þ iþ jÞn x2

iþjGa;bðxiþjÞ

 �� ; ð33Þ
where eF ðxÞ ¼ R x
0

Ga;bðtÞ sinðvtÞ dt and xl ¼ ðlþ 1Þpv for l = 0,1, . . ., which are the successive positive zeros of
sin(vx).



28 H. Safouhi, L. Berlu / Journal of Computational Physics 216 (2006) 19–36
As it can be seen from Eq. (33), the computation of the successive zeros of the spherical Bessel function and
the computation of a method to solve linear systems were avoided and this led to a great simplifications in the
calculation and to a considerable reduction in the calculation times. The accuracy was also improved using
this approach, since the oscillation of the integrand fFa;bðxÞ with the sine function was considerably reduced
compared to the oscillations of the integrand Fa;bðxÞ with the spherical Bessel function, and this helped the
extrapolation method.

The computation of the approximation SD
ð2;jÞ
n using Eq. (33) is not advantageous, because of the absence of

the control of the degree of accuracy. Note also that Eq. (33) cannot be computed recursively. In [66], we
developed recurrence relations satisfied by both numerator Að2;jÞn and denominator Bð2;jÞn of the term in the
right-hand side of Eq. (33).

Let U n
i and V n

i be the ith term of the finite sum Að2;jÞn and Bð2;jÞn , respectively. In [66], we showed that Að2;jÞn and
Bð2;jÞn satisfy the following relations:
Að2;jÞn ¼
Xnþ1

i¼0

U n
i ¼

Xn

i¼0

ðnþ 1Þ
ðnþ 1� iÞ ð1þ iþ jÞU n�1

i þ U n
nþ1;

Bð2;jÞn ¼
Xnþ1

i¼0

V n
i ¼

Xn

i¼0

ðnþ 1Þ
ðnþ 1� iÞ ð1þ iþ jÞV n�1

i þ V n
nþ1.

ð34Þ
From the above equations, it follows that SD
ð2;jÞ
n can be re-written as [66]:
SD
ð2;jÞ
n ¼ 1

vþ1

Pn
i¼0

ðnþ1Þ
ðnþ1�iÞ ð1þ iþ jÞU n�1

i þ Un
nþ1Pn

i¼0
ðnþ1Þ
ðnþ1�iÞ ð1þ iþ jÞV n�1

i þ V n
nþ1

. ð35Þ
The values of U k
i and V k

i , k = 0,1,2, . . . and i = 0,1, . . . ,k + 1, are stored at each iteration. This led to a sub-
stantial gain in the calculation times, since the calculation of all values of x2

iþjGa;bðxiþjÞ for each order of the SD
is avoided. By storing the values of Uk

i and V k
i , one can perform the following test allowing the control of the

degree of accuracy:
SD
ð2;jÞ
n � SD

ð2;jÞ
n�1

  ¼ 1

vkþ1

Að2;jÞn

Bð2;jÞn

� Að2;jÞn�1

Bð2;jÞn�1


 6 �; ð36Þ
where � is defined according to the pre-determined degree of accuracy.
In some cases Ga,b(xi+j)! 0 or +1. We demonstrated [66,58] that in these cases we can obtain a very good

approximation of the semi-infinite integral under consideration using the following formulae:
SD
ð2;jÞ
n � 1

vþ1

P
i2E

nþ 1

i

� �
ð1þ iþ jÞn F ðxiþjÞ

x2
iþjP

i2E

nþ 1

i

� �
ð1þ iþ jÞn 1

x2
iþj

; ð37Þ
where E is the subset of I = {0,1,2, . . . ,n + 1} defined by:
E ¼ fk 2 I such that Ga;bðxkþjÞ ! 0 orþ1g.

Note that the recurrence relations given by Eq. (34) are still applicable for the computation of to the approx-
imation SD

ð2;jÞ
n given by Eq. (37).

The following test was included in the algorithm:
R ¼ Að2;jÞneAð2;jÞn

� Bð2;jÞneBð2;jÞn


 6 tiny or eR ¼ eAð2;jÞn

Að2;jÞn

�
eBð2;jÞn

Bð2;jÞn


 6 tiny; ð38Þ
where eAð2;jÞn stands for the numerator and eBð2;jÞn for the denominator of the term in the right-hand side of Eq.
(37) and where tiny should be set close to but not identical with the smallest floating point number that is
representable on the computer. If the test is realized then the subroutine returns the approximation SD

ð2;jÞ
n

using Eq. (37) with the recurrence relations (34).
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As it can be seen from Eq. (33), the computation of the function Ga,b(x) is necessary for the calculations.
With the help of Eqs. (8), (10) and (11) and by using the Leibnitz formula, one can easily obtain in the case
where nc12

¼ 2m12 and nc34
¼ 2m34:
d

x dx

� �k

xnxþk�1 k̂m21
½c21ða; xÞR21�
½c21ða; xÞ�

nc21

k̂m34
½c34ðb; xÞR34�

c34ðb; xÞ½ �nc34

" #

¼
Xk

l1¼0

k

l1

� �Xk�l1

l2¼0

k� l1

l2

� � Xk�l1�l2

l3¼0

k� l1 � l2

l3

� �
ðnx þ k� 1Þ!!

ðnx þ k� 1� 2l1Þ!!
xnxþk�1�2l1

� ð�1Þl2ak�l1ð1� aÞk�l1
k̂m21þk�l1

c21ða; xÞR21½ �
c21ða; xÞ½ �2ðm21þk�l1Þ

bk�l1�l2ð1� bÞk�l1�l2
k̂m34þk�l1�l2

c34ðb; xÞR34½ �
½c34ðb; xÞ�

2ðm34þk�l1�l2Þ
; ð39Þ
and for nc12
< 2m12 and nc34

< 2m34, one can obtain:
d

x dx

� �k

xnxþk�1 k̂m21
½c21ða;xÞR21�

c21ða;xÞ½ �nc21

k̂m34
½c34ðb;xÞR34�
½c34ðb;xÞ�

nc34

" #

¼
Xk

l1¼0

k

l1

� �Xk�l1

l2¼0

k� l1

l2

� � Xk�l1�l2

l3¼0

k� l1� l2

l3

� �
ðnxþ k� 1Þ!!

ðnxþ k� 1� 2l1Þ!!
xnxþk�1�2l1

� ak�l1ð1� aÞk�l1

c21ða;xÞ½ �nc21
þ2k�2l1

Xk�l1

i¼0

k� l1

i

� � ð�1Þið2m21� nc21
Þ!!

ð2m21� nc21
� 2iÞ!! k̂m21þk�l1�i c21ða;xÞR21½ �

� bk�l1�l2ð1�bÞk�l1�l2

½c34ðb;xÞ�
nc34
þ2k�2l1�2l2

Xk�l1�l2

j¼0

k� l1� l2

j

� � ð�1Þl2þjð2m34� nc34
Þ!!

ð2m34� nc34
� 2jÞ!! k̂m34þk�l1�j½c34ðb;xÞR34�. ð40Þ
From Eqs. (40), (10) and (11), it follows that the computation of the function Ga,b(x) does not present any
difficulty.
5. Numerical results and discussion

In the case when v! 0, the semi-infinite integral fZða; bÞ (26) vanishes if k 6¼ 0, since limx!0 jk(x) = 0 and
the integrand is an exponentially decreasing function (converges to 0 when x! +1), and if k = 0, we used the
fact that j0ðxÞ ¼ sinðxÞ

x ! 1 when x! 0 and the fact that the integrand is exponentially decreasing function, to
obtain a good approximation of the semi-infinite integral which is given by:
fZða; bÞ � Z þ1

0

xnx
k̂m21
½c21ða; xÞR21�
½c21ða; xÞ�

nc21

k̂m34
½c34ðb; xÞR34�
½c34ðb; xÞ�

nc34
dx. ð41Þ
For the evaluation of the above semi-infinite integral, we used Gauss–Laguerre quadrature of order 64. Note
that the accuracy in the evaluation of the above semi-infinite integral can be improved by including higher
terms of the power series expansion of j0(z) around z = 0.

The finite integrals eF ðxÞ occurring in Eq. (33) are transformed into a finite sum as follows:
eF ðxÞ ¼Xnþ1

i¼0

Z xiþ1

xi

fFa;bðtÞ dt; ð42Þ
where x0 = 0 and xi ¼ ipv for i = 1,2, . . . ,n + 1.
The evaluation of each term of the finite sum is evaluated using the following procedure:

� When v P 1, we used Gauss–Legendre quadrature of order 24.
� When 10�15 < v < 1, we divided the finite interval [xi,xi+1] into M subintervals, where M = min(v�1,100).

The finite integral
R xiþ1

xi
fFa;bðtÞ dt can be re-written as:



Table
Values

a

.999

.999

.999

.999

.001

.001

.001

.999

.999

.999

.999

.999

.001

.001

.001

.001

R1 = 2

Table
Evalua
(28) an

njk
max

1138
1987
1582
1258
1389
1122
1694
1231
1745
1432
1689
1542
1883
1578
2438
1487

a, b, m
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Z xiþ1

xi

fFa;bðtÞ dt ¼
XM�1

k¼0

Z ~xkþ1

~xk

fFa;bðtÞ dt; ð43Þ
where ~x0 ¼ x0, ~xM ¼ xnþ1 and for k = 1, 2, . . . ,M � 1, ~xk ¼ xi þ kxiþ1�xi

M .

For the evaluation of each finite integral involving in the above finite sum, we used Gauss–Legendre quad-
rature of order 24.

The value of M was determined after a series of numerical tests on different values of v.
For the numerical evaluation of the outer finite a and b integrals occurring in Eq. (25), we used Gauss–

Legendre quadrature of order 48. The value of epsilon � in Eq. (36) was set to 10�15. We notice that one
can increase the accuracy by decreasing the value of epsilon. For the numerical evaluation of Gaunt coeffi-
1
of the semi-infinite integral fZða;bÞ (26) obtained using the infinite series with the sine function (31)

b m12 nc12
m34 nc34

nx k f1 f2 f3 f4 v nsin
max

~Jðs; tÞn
sin
max

.999 5/2 5 5/2 5 1 1 1.5 1.0 1.0 1.5 24.501 950 .477544764867146(�02)

.001 5/2 1 5/2 1 1 1 1.0 1.7 2.0 1.0 27.495 1675 .105272707975582(�02)

.001 5/2 3 5/2 3 1 1 1.0 1.2 1.2 1.0 27.495 1316 .181953669767981(�02)

.001 5/2 5 5/2 5 1 1 1.0 1.3 1.3 1.0 27.495 1040 .762343846671344(�03)

.001 7/2 5 7/2 5 1 1 1.5 1.5 1.5 1.5 25.499 1165 .964223000847461(�03)

.001 7/2 7 7/2 7 1 1 1.4 5.0 5.0 1.4 25.499 939 .581682312428543(�03)

.999 9/2 5 9/2 5 2 2 1.9 6.5 1.9 6.5 22.505 1250 .452480351741839(�03)

.999 9/2 9 9/2 9 2 2 2.0 1.5 1.5 2.0 24.501 893 .392989948554829(�03)

.999 9/2 7 9/2 7 3 3 6.0 1.4 1.4 5.0 24.501 1103 .117483365648093(�02)

.999 9/2 9 9/2 9 3 3 2.0 1.4 1.4 5.0 24.501 898 .322043911410257(�03)

.001 11/2 10 11/2 10 3 3 8.0 1.7 3.5 1.5 27.495 1070 .556027981384833(�03)

.001 11/2 11 11/2 11 3 3 8.0 1.4 8.0 1.6 27.495 982 .791379364173145(�03)

.001 13/2 11 13/2 11 4 4 2.0 5.0 2.5 1.7 25.499 1075 .393944366125535(�03)

.001 13/2 13 13/2 13 4 4 1.6 2.5 2.5 1.6 25.499 902 .219334200082080(�03)

.001 17/2 11 17/2 11 4 4 2.7 2.0 9.0 2.7 25.499 1474 .110480172181313(�02)

.001 17/2 17 17/2 17 4 4 2.0 6.0 3.0 2.0 25.499 904 .662354870374030(�03)

.5, R2 = 4.5, R3 = 30.0 and R4 = 27.0.

2
tion of the semi-infinite integral fZða; bÞ (26), using the infinite series with the spherical Bessel function (27), the �D transformation
d the S �D approach (35)

~Jðs; tÞn
jk
max Error �Dð2Þ10 Error S �Dð2;0Þ10 Error

.477544764867258(�02) .11(�14) .477544764862978(�02) .42(�13) .477544764867217(�02) .71(�15)

.105272707975487(�02) .94(�15) .105272707975473(�02) .11(�14) .105272707975536(�02) .46(�15)

.181953669768073(�02) .92(�15) .181953669767635(�02) .35(�14) .181953669768036(�02) .55(�15)

.762343846672292(�03) .95(�15) .762343846668867(�03) .25(�14) .762343846671861(�03) .52(�15)

.964223000846548(�03) .91(�15) .964223000845251(�03) .22(�14) .964223000847002(�03) .46(�15)

.581682312428577(�03) .33(�16) .581682312425974(�03) .26(�14) .581682312428073(�03) .47(�15)

.452480351737068(�03) .48(�14) .452480351737322(�03) .45(�14) .452480351741370(�03) .47(�15)

.392989948556617(�03) .18(�14) .392989948542320(�03) .13(�13) .392989948555340(�03) .51(�15)

.117483365647546(�02) .55(�14) .117483365632605(�02) .15(�12) .117483365648060(�02) .33(�15)

.322043911392475(�03) .18(�13) .322043911348076(�03) .62(�13) .322043911410818(�03) .56(�15)

.556027981624919(�03) .24(�12) .556027981336169(�03) .49(�13) .556027981385363(�03) .53(�15)

.791379364304491(�03) .13(�12) .791379364074091(�03) .99(�13) .791379364173737(�03) .59(�15)

.393944353305154(�03) .13(�10) .393944366010891(�03) .11(�12) .393944366126083(�03) .55(�15)

.219334194340248(�03) .57(�11) .219334199969961(�03) .11(�12) .219334200081674(�03) .41(�15)

.110480173781362(�02) .16(�10) .110480172173683(�02) .76(�13) .110480172181269(�02) .44(�15)

.662354850714832(�03) .20(�10) .662354870104294(�03) .27(�12) .662354870373728(�03) .30(�15)

12, nc12
, m34, nc34

, nx, k, f1, f2, f3, f4, R1, R2, R3, R4 and v are given in Table 1.
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cients which occur in the complete expressions of the integrals under consideration, we used the subroutine
GAUNT.F developed by Weniger [79]. The spherical harmonics Y m

l ðh;uÞ are computed using the recurrence
formulae presented in [79].

Table 1 contains values of the semi-infinite integral fZða; bÞ (26) obtained using the infinite series with the
sine function (31). In Table 2, we evaluated the semi-infinite integral fZða; bÞ (26) using the infinite series with
the spherical Bessel function (27), the D transformation (28) and the SD approach (35). In these tables, the
errors stand for the absolute errors.
Table 3
Slater exponents

Orbitals Carbon Nitrogen Oxygen

STO 1s 5.6727 6.6651 7.6579
STO 2s 1.6083 1.9237 2.2458
STO 2pz(2z) 1.5679 1.9170 2.2266

Table 4
Values of multicenter overlap-like quantum similarity integrals over STFs Z1234 (25)

ZABCD
a A(b) B(b) C(b) D(b) �Dð2Þ8 S �Dð2Þn

Tricenter Coulomb-like (aligned)

Z1s1s1s1s (0,0,0) (0,0,0) (0,0,1) (0,0,�1) .116 377 193 119(�3) .116 377 190 222(�3)
Z1s2s1s2s (0,0,0) (0,0,0) (0,0,1) (0,0,�1) .222 636 464 988(�2) .222 636 464 987(�2)
Z2s2pz1s2s (0,0,0) (0,0,0) (0,0,1) (0,0,�1) .454 480 662 531(�2) .454 480 662 531(�2)
Z2pz2pz1s2pz

(0,0,0) (0,0,0) (0,0,1) (0,0,�1) .119 583 679 103(�1) .119 583 679 103(�1)
Z2pz2pz2pz2pz

(0,0,0) (0,0,0) (0,0,1) (0,0,�1) �.164 009 565 733(�1) �.164 009 565 708(�1)

Tricenter exchange-like (aligned)

Z1s1s1s1s (0,0,0) (0,0,1) (0,0,0) (0,0,�1) .507 698 321 030(�4) .507 698 333 634(�4)
Z1s2s1s2s (0,0,0) (0,0,1) (0,0,0) (0,0,�1) .581 546 572 656(�1) .581 546 572 656(�1)
Z2s2pz1s2s (0,0,0) (0,0,1) (0,0,0) (0,0,�1) �.159 105 821 383(�1) �.159 105 821 383(�1)
Z2pz2pz1s2pz

(0,0,0) (0,0,1) (0,0,0) (0,0,�1) .176 868 161 248(�2) .176 868 161 247(�2)
Z2pz2pz2pz2pz

(0,0,0) (0,0,1) (0,0,0) (0,0,�1) �.134 167 397 640(�1) �.134 167 397 640(�1)

Tricenter Coulomb-like (equilateral triangle)

Z1s2s2s2s (1,0,0) (1,0,0) ð�1
2;
ffiffi
3
p

2 ; 0Þ ð�1
2;�

ffiffi
3
p

2 ; 0Þ .305 435 816 795(�2) .305 435 816 843(�2)

Z2s2s2s2s (1,0,0) (1,0,0) ð�1
2;
ffiffi
3
p

2 ; 0Þ ð�1
2;�

ffiffi
3
p

2 ; 0Þ .874 706 538 478(�2) .874 706 538 477(�2)

Z2pz2s2s2pz
(1,0,0) (1,0,0) ð�1

2;
ffiffi
3
p

2 ; 0Þ ð�1
2;�

ffiffi
3
p

2 ; 0Þ .496 481 028 442(�2) .496 481 028 441(�2)

Z2pz2pz2s2s (1,0,0) (1,0,0) ð�1
2;
ffiffi
3
p

2 ; 0Þ ð�1
2;�

ffiffi
3
p

2 ; 0Þ .586 324 108 548(�2) .586 324 108 549(�2)

Z2pz2pz2pz2pz
(1,0,0) (1,0,0) ð�1

2;
ffiffi
3
p

2 ; 0Þ ð�1
2;�

ffiffi
3
p

2 ; 0Þ .446 819 460 293(�2) .446 819 460 293(�2)

Tricenter exchange-like (equilateral triangle)

Z1s2s2s2s (1,0,0) ð�1
2;
ffiffi
3
p

2 ; 0Þ (1,0,0) ð�1
2;�

ffiffi
3
p

2 ; 0Þ .218 873 297 824(�2) .218 873 297 836(�2)

Z2s2s2s2s (1,0,0) ð�1
2;
ffiffi
3
p

2 ; 0Þ (1,0,0) ð�1
2;�

ffiffi
3
p

2 ; 0Þ .821 484 459 122(�2) .821 484 459 121(�2)

Z2pz2s2s2pz
(1,0,0) ð�1

2;
ffiffi
3
p

2 ; 0Þ (1,0,0) ð�1
2;�

ffiffi
3
p

2 ; 0Þ .410 767 865 180(�2) .410 767 865 180(�2)

Z2pz2pz2s2s (1,0,0) ð�1
2;
ffiffi
3
p

2 ; 0Þ (1,0,0) ð�1
2;�

ffiffi
3
p

2 ; 0Þ .410 767 865 179(�2) .410 767 865 179(�2)

Z2pz2pz2pz2pz
(1,0,0) ð�1

2;
ffiffi
3
p

2 ; 0Þ (1,0,0) ð�1
2;�

ffiffi
3
p

2 ; 0Þ .409 199 451 345(�2) .409 199 451 345(�2)

Tetracenter integrals (regular tetrahedron)

Z2s2s2s2s (1,1,1) (�1,1,�1) (�1,�1,1) (1,�1,�1) .549 964 345 914(�3) .549 964 345 904(�3)
Z1s2s2pz2s (1,1,1) (�1,1,�1) (�1,�1,1) (1,�1,�1) �.347 848 333 360(�5) �.347 848 341 005(�5)
Z2s2pz1s2s (1,1,1) (�1,1,�1) (�1,�1,1) (1,�1,�1) .180 963 998 996(�4) .180 963 999 020(�4)
Z2pz2pz1s2pz

(1,1,1) (�1,1,�1) (�1,�1,1) (1,�1,�1) �.368 161 920 446(�5) �.368 161 918 533(�5)
Z2pz2pz2pz2pz

(1,1,1) (�1,1,�1) (�1,�1,1) (1,�1,�1) .287 234 575 143(�3) .287 234 575 143(�3)

a ZABCD: A and C are carbon atoms, B is a nitrogen and D is an oxygen.
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In Tables 1 and 2, the parameters nsin
max and njk

max stand for the numbers of terms of the infinite series with the
sine function (31) and the infinite series with the spherical Bessel function (27), needed to obtain values of the
semi-infinite integrals computed in double precision (15 correct digits). From these two parameters, one can
easily notice that the infinite series with the sine function has better convergence properties than the one with
the spherical Bessel function.

Note that the numerical evaluation of the semi-infinite integrals was performed in the regions where the
oscillations of the integrand are strong (a and b are close to 0 or 1). In these regions, the functions c21(a,x)
and c34(b,x) become constants and the strong oscillations of the spherical Bessel function cannot be damped
by the exponential decreasing functions k̂m. Note also that the values of v (see Table 1) are large. Numerical
tables and more details on the stability of the algorithm and the control of the degree of accuracy in the
numerical evaluation of this kind of semi-infinite integrals are presented in [58].

Table 3 contains orbital screening parameters used for the calculations.
Table 4 contains values for multicenter overlap-like quantum similarity integrals.
Tables 5 and 6 contain values of the two kinds of two-center overlap-like quantum similarity integrals.

These values are in a complete agreement with those obtained using different approaches, namely the one-
center two-range expansion method [73], the epsilon algorithm of Wynn [74] and the nonlinear D transforma-
Table 5
Two-center overlap-like quantum similarity integrals of the first kind over STFsa

Integrals AB (a.u.) �Dð2Þ8 S �Dð2Þn

Z1S1S1S 1S 0.500 .858 425 852 923(0) .858 425 852 924(0)
1.000 .347 537 772 524(�1) .347 537 772 530(�1)
1.500 .129 121 270 397(�2) .129 121 270 361(�2)
2.000 .469 995 445 766(�4) .469 995 449 874(�4)

Z1S1S2S 2S 0.500 .501 673 492 454(�1) .501 673 492 454(�1)
1.000 .390 192 927 181(�1) .390 192 927 166(�1)
1.500 .230 003 633 004(�1) .230 003 632 973(�1)
2.000 .119 325 313 955(�1) .119 325 313 974(�1)

Z1S1S2S 2Z 0.500 �.737 342 853 412(�1) �.737 342 853 102(�1)
1.000 �.646 915 685 904(�1) �.646 915 685 910(�1)
1.500 �.391 549 466 792(�1) �.391 549 466 819(�1)
2.000 �.205 463 625 957(�1) �.205 463 625 987(�1)

a ZAAA B: A is a carbon atom and B is a nitrogen.

Table 6
Two-center overlap-like quantum similarity integrals of the second kind over STFsa

Integrals AB (a.u.) �Dð2Þ8 S �Dð2Þn

Z1S1S 1S1S 0.500 .392 518 041 090(0) .392 518 041 226(0)
1.000 .287 290 954 878(�2) .287 291 437 606(�2)
1.500 .141 995 989 999(�4) .142 141 727 540(�4)
2.000 .623 967 358 452(�7) .598 047 418 124(�7)

Z1S2S 1S2S 0.500 .185 319 048 860(�1) .185 319 048 857(�1)
1.000 .266 806 719 558(�2) .266 806 719 069(�2)
1.500 .206 888 522 479(�3) .206 888 508 304(�3)
2.000 .115 770 030 096(�4) .115 769 693 510(�4)

Z1S2S 1S2Z 0.500 �.159 539 764 712(�1) �.159 539 764 712(�1)
1.000 �.324 008 017 562(�2) �.324 008 017 676(�2)
1.500 �.280 545 794 472(�3) �.280 545 795 515(�3)
2.000 �.165 259 598 173(�4) �.165 259 528 941(�4)

a ZAA BB: A is a carbon atom and B is a nitrogen.



H. Safouhi, L. Berlu / Journal of Computational Physics 216 (2006) 19–36 33
tion [60]. From these tables, one can notice that the analytic expression (25) is general and able to produce
values for two- or three-center integrals. In these tables, nuclei are placed along the (oz) axis.

All the computations were done in Fortran double precision. We used Lahey ED compiler (15 significant
decimals in double precision).

In all tables, the numbers in parentheses represent powers of 10 and all entries are in atomic units. Calcu-
lations were performed on a Workstation with an Intel Xeon Processor with 2.4 GHz.

6. Conclusion

Quantum similarity measurements are expressed in terms of four-center overlap-like quantum similarity
integrals, using the LCAO approach with STFs as basis set of atomic orbitals. These STFs are expressed in
terms of the so-called B functions, better suited to apply the Fourier transform method. The use of the Fourier
representation of delta Dirac function and the Fourier transform method, analytic expressions were developed
for the integrals under consideration. The obtained analytic expressions turned out to be very difficult to eval-
uate accurately and rapidly, because of the presence of highly oscillatory spherical Bessel integrals.

The nonlinear D transformation led to an accurate algorithm for the numerical evaluation of these spherical
Bessel integral functions. Unfortunately, this transformation, which is one of the most powerful tool for
improving convergence of oscillatory integrals, requires the computation of the successive zeros of the spher-
ical Bessel functions and a computation of a method to solve linear systems. This requires a large amount of
CPU time.

In the present contribution, we showed that these spherical Bessel integrals can be transformed into semi-
infinite integrals involving the simple sine function, using the SD approach. The strong oscillations of the inte-
grand are considerably reduced. The obtained sine integral function is shown to be suitable to apply the D
transformation. The successive zeros of the spherical Bessel function and the computation of a method to
solve linear systems are not required anymore for the calculations. The calculation times were considerably
reduced.

The recurrence relations developed for the computation of the approximations SD
ð2;jÞ
n allowed the control of

the degree of accuracy and the algorithm developed from this method is stable.
A series of numerical tests showed that some cases have to be treated separately; v! 0, Ga,b(xi+j)! 0 or

+1. Formulae were developed for each case.
The introduction of the SD approach in the numerical evaluation of overlap-like quantum similarity inte-

grals will definitely lead to the development of a complete package for the numerical evaluation of quantum
molecular measurements using STFs as basis set of atomic orbitals.
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Vergleichende Rechnungen am Beispiel des Hþ2 , Diplomarbeit, Fachbereich Chemie und Pharmazie, Universität Regensburg, 1977.
[30] E.O. Steinborn, E.J. Weniger, Advantages of reduced Bessel functions as atomic orbitals: an application to Hþ2 , Int. J. Quantum

Chem. Symp. 11 (1977) 509.
[31] E.O. Steinborn, E.J. Weniger, Reduced Bessel functions as atomic orbitals: some mathematical aspects and an LCAO-MO treatment

of HeH2+, Int. J. Quantum Chem. Symp. 12 (1978) 103.
[32] E.J. Weniger, E.O. Steinborn, The Fourier transforms of some exponential-type functions and their relevance to multicenter

problems, J. Chem. Phys. 78 (1983) 6121.
[33] A.W. Niukkanen, Fourier transforms of atomic orbitals. I. Reduction to four-dimensional harmonics and quadratic transformations,

Int. J. Quantum Chem. 25 (1984) 941.
[34] E.J. Weniger, Weakly convergent expansions of a plane wave and their use in Fourier integrals, J. Math. Phys. 26 (1985) 276.
[35] F.P. Prosser, C.H. Blanchard, On the evaluation of two-center integrals, J. Chem. Phys. 36 (1962) 1112.
[36] M. Geller, Two-center, nonintegral, Slater-orbital calculations: integral formulation and application to the Hydrogen molecule–ion, J.

Chem. Phys. 36 (1962) 2424.
[37] M. Geller, Two-center integrals over solid spherical harmonics, J. Chem. Phys. 39 (1963) 84.
[38] M. Geller, Two-electron, one- and two-center integrals, J. Chem. Phys. 39 (1963) 853.
[39] M. Geller, Zero-field splitting, one- and two-center Coulomb-type integrals, J. Chem. Phys. 40 (1964) 2309.
[40] M. Geller, Two-center Coulomb integrals, J. Chem. Phys. 41 (1964) 4006.
[41] H.P. Trivedi, E.O. Steinborn, Fourier transform of a two-center product of exponential-type orbitals. Application to one- and two-

electron multicenter integrals, Phys. Rev. A 27 (1983) 670.
[42] J. Grotendorst, E.O. Steinborn, Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type

orbitals via the Fourier-transform method, Phys. Rev. A 38 (1988) 3857.
[43] E.J. Weniger, The spherical tensor gradient operator, Collect. Czech. Chem. Commun. 70 (2005) 1125.
[44] E.J. Weniger, J. Grotendorst, E.O. Steinborn, Unified analytical treatment of overlap, two-center nuclear attraction and Coulomb

integrals of B functions via the Fourier-transform method, Phys. Rev. A 33 (1986) 3688.
[45] J. Grotendorst, E.J. Weniger, E.O. Steinborn, Efficient evaluation of infinite-series representations for overlap, two-center nuclear

attraction, and Coulomb integrals using nonlinear convergence accelerators, Phys. Rev. A 33 (1986) 3706.
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[83] R. Carbó-Dorca, E. Besalù, L. Amat, X. Fradera, On quantum molecular similarity measures (QMSM) and indices (QMSI), J. Math.
Chem. 19 (1996) 47.

[84] C. Brezinski, M.R. Zaglia, Extrapolation Methods: Theory and Practice, North-Holland, Amsterdam, 1991.
[85] G. Evans, Practical Numerical Integration, Wiley, Chichester, 1993.
[86] A. Sidi, Practical Extrapolation Methods, Cambridge University Press, Cambridge, 2003.
[87] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34 (1955) 1.


	The Fourier transform method and the S \overline{D} approach for the analytical and numerical treatment of multicenter overlap-like quantum similarity integrals
	Introduction
	General definitions and properties
	Multicenter overlap-like quantum similarity integral
	The S \overline{D} approach and the development of the algorithm
	Numerical results and discussion
	Conclusion
	Acknowledgment
	References


